
[Mekalai et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[1861-1867]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

Implementation on Quality Analysis in Web Applications to Develop

Specification and Duplication Mining
M.Mani Mekalai

Sri Krishna arts and Science College, India

manimekalai.m.v.a@gmail.com

Abstract
 We propose an approach to Analysis of modern web applications and detect duplicated blocks of code to

quality improvement and specification in Web sites and on the analysis of both the page structure, implemented by

specific sequences of HTML tags, and the displayed content. In addition, for each pair of dynamic pages we also

consider the similarity degree of their scripting code. The similarity degree of two pages is computed using different

similarity metrics for the different parts of a web page based on the code duplication string edit distance. We have

implemented a prototype to automate the duplicate detection process on web applications developed using

technology and used it to validate our approach in a case study. In this system an approach to duplicate analysis for

Web applications has been proposed together with a prototype implementation for web pages. Our approach

analyzes the page structure, implemented by specific sequences of HTML tags, and the content displayed for both

dynamic and static pages. Indeed, we plan to exploit the results of the duplicate analysis method to support web

application reengineering activities

Keywords: Code refactoring, prototype implementation, reengineering, trustworthiness and cocitation degree

 Introduction
Code refactoring are similar program

structures of considerable size and significant

similarity. Several studies suggest that as much as

20-50 percent of large software systems consist of

cloned code. Knowing the location of clones

Helps in program understanding and

maintenance. Some clones can be removed with

refactoring, by replacing them with function calls

or macros, or we can use unconventional

metalevel techniques such as Aspect-Oriented

Programming or XVCL to avoid the harmful

effects of clones.Refactoring is an active area of

research, with a multitude of refactoring detection

techniques been proposed in the literature. One

limitation of the current research on code clones

is that it is mostly focused on the fragments of

duplicated code (we call them simple clones), and

not looking at the big picture where these

fragments of duplicated code are possibly part of

a bigger replicated program structure. We call

these larger granularity similarities structural

clones. Locating structural clones can help us see

the forest from the trees, and have significant

value for program understanding, evolution,

reuse, and reengineering. Refactoring tools

produce an overwhelming volume of simple

refactoring’ data that is difficult to analyze in

order to find useful clones. This problem

prompted different solutions that are related to

our idea of detecting structural clones. Some

clone detection approaches target large-

granularity clones such as similar files, without

specifying the details of the low-level similarities

contained inside them.

Existing System Drawbacks
Our previous work suggested that

programmers make mistakes in error-handling

code, perhaps because programmers do not reason

properly about uncommon code paths (such as

those through catch blocks).We surmise that a

candidate that is adhered to on common paths but

violated on uncommon paths is thus more likely a

true specification, as the violations are more

likely to be bugs.That statically predicts the

likelihood that a path will be executed when its

enclosing method is called (its predicted

frequency)We observe that the hypothesized

pattern holds for the adhering and violating traces

of the candidatesOther research presented human-

defined code readability metric; more readable

code is correlated with fewer errors.Reapplying

[Mekalai et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[1861-1867]

the logic from above, we hypothesize that the true

specification’s adhering traces are more readable

than its violating traces (containing an error), and

that such a distinction might not hold for the false

candidate

Proposed System
This project proposes an approach for

detecting duplicates in web sites and web

applications, obtained tailoring the existing

methods to detect duplicates in traditional

software systems. The approach has been

assessed performing analysis on several web sites

and web applications.Maintaining software

systems are getting more complex and difficult

task, as the scale becomes larger. It is generally

said that code duplicate is one of the factors that

make software Maintenance difficult. This project

also develops a maintenance support

environment, which visualizes the code duplicate

information and also overcomes the limitation of

existing tools.

Proposed Methodology
Extend Co-Citation Algorithm:

 A Cocitation algorithm that extends the

traditional Cocitation concepts. The Cocitation

analysis has been used to measure the similarity

of papers, journals, or authors for clustering. For a

pair of documents p and q, if they are both cited

by a common document, documents p and q is

said to be co cited Then number of documents

that cite both p and q is referred to as the

cocitation degree of documents p and q. The

similarity between two documents is measured by

their cocitation degree. This type of analysis has

been shown to be effective in a broad range of

disciplines, ranging from author cocitation

analysis of scientific sub fields to journal

cocitation analysis. In the context of the web, the

hyperlinks are regarded as citations between the

pages. If a web page p has a hyperlink to another

page q, page q is said to be cited by page p. In this

sense, citation and cocitation analyses are

smoothly extended to the web page hyperlink

analysis.

 The extended cocitation algorithm is

presented with a new page source. It is

constructed as a directed graph with edges

indicating hyperlinks and nodes representing the

following pages.

 page u

 Up to B parent pages of u and up to BF

child pages of each parent page those are

different from u

 Up to F child pages of u and up to FB

parent pages of each child page those are

different from u

 The parameters B, BF, and FB are

used to keep the page source to a reasonable

size. Before giving the Extended Cocitation

algorithm for finding relevant pages, the

following concepts are defined

Truth Finder Algorithm
We can infer the website

trustworthiness if we know the fact confidence

and vice versa. As in Authority-Hub analysis

and Page Rank, TRUTHFINDER adopts an

iterative method to compute the

trustworthiness of websites and confidence of

facts. Initially, it has very little information

about the websites and the facts. At each

iteration, TRUTHFINDER tries to improve its

knowledge about their trustworthiness and

confidence, and it stops when the computation

reaches a stable state.

Truth Finder Algorithm

As in other iterative approaches TRUTHFINDER

needs an initial state. We choose the initial state

in which all websites have uniform

trustworthiness t0. (t0 should be set to the

estimated average trustworthiness, such as 0.9.)

From the website trustworthiness

TRUTHFINDER can infer the confidence of

[Mekalai et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[1861-1867]

facts, which are very meaningful because the facts

supported by many websites are more likely to be

correct. On the other hand, if we start from a

uniform fact confidence, we cannot infer

meaningful trustworthiness for websites. Before

the iterative computation, we also need to

calculate the two matrices A and B, as defined.

They are calculated once and used at

every iteration. In each step of the iterative

procedure, TRUTHFINDER first uses the website

trustworthiness to compute the fact confidence

and then recomputed the website trustworthiness

from the fact confidence. Each step only requires

two matrix operations and Conversions between

tðwÞ and _ðwÞ and between sðfÞ and __ðfÞ. The

matrices are stored in sparse formats, and the

computational cost of multiplying such a matrix

and a vector is linear with the number of nonzero

entries in the matrix. TRUTHFINDER stops

iterating when it reaches a stable state. The

stableness is measured by how much the

trustworthiness of websites changes between

iterations. If t(w) ! Only changes a little after an

iteration (measured by cosine similarity between

the old and the new t(w), then TRUTHFINDER

will stop.

Modules Description
1. Web URL Identification

In computing, a Uniform Resource

Locator (URL) is a type of Uniform Resource

Identifier (URI) that specifies where an identified

resource is available and the mechanism for

retrieving it. In popular usage and in many

technical documents and verbal discussions it is

often, imprecisely and confusingly, used as a

synonym for uniform resource identifier. The

confusion in usage stems from historically

different interpretations of the semantics of the

terms involved. In popular language a URL is

also referred to as a Web address.

2. Information Extraction and Parsing

The HTML Parsing module is a class for

accessing HTML as tokens. An HTML Parsing

object gives you one token at a time, much as a

file handle gives you one line at a time from a

file. The HTML can be tokenized from a file or

string. The tokenizer decodes entities in

attributes, but not entities in text. A program that

extracts information by working with a stream of

tokens doesn’t have to worry about the peculiarity

of entity encoding, whitespace, quotes, and trying

to work out where a tag ends.

Regular expressions are powerful, but

they’re a painfully low-level way of dealing with

HTML. The system processes the spaces and new

lines, single and doubles quotes, HTML

comments, and a lot more. The next step up from

a regular expression is an HTML tokenize.

In this chapter, we’ll use HTML Parser

to extract information from HTML files. Using

these techniques, you can extract information

from any HTML file, and never again have to

worry about character-level trivia of HTML

markup. And automatic passage extraction

methods from the body may be worthwhile.

Implications of the findings for aids to

summarization, and specifically the Text

3. Template Finding & Training

TRUTHFINDER also finds some large

trustworthy bookstores such as A1 Books, which

provides 86 of 100 books with an accuracy of

0.878. Please notice that TRUTHFINDER uses

no training data, and the testing data is manually

created by reading the authors’ names from book

covers. Therefore, we believe TRUTHFINDER

performs iterative computation to find out the set

of authors for each book. In order to test its

accuracy, we randomly select 100 books and

manually find out their authors. We find the

image of each book and use the authors on the

book cover as the standard fact

4. Clone Comparison and Mining

Finally, we perform an interesting

experiment on finding trustworthy websites. It is

well known that Google (or other search engines)

is good at finding authoritative websites.

However, do these websites provide accurate

information? To answer this question, we

compare the online bookstores that are given

highest ranks by Google with the bookstores with

highest trustworthiness found by Levenshtein

distance uses iterative methods to compute the

website trustworthiness and fact confidence,

which is widely used in many link analysis

approaches, . The common feature of these

approaches is that they start from some initial

state that is either random or uninformative. Then,

at each iteration, the approach will improve the

current state by propagating information (weights,

probability, trustworthiness, etc.) through the

links.

Presentation and Discussion of Finding
CODE clones are similar program

structures of considerable size and significant

similarity. Several studies suggest that as much as

20-50 percent of large software systems consist of

cloned code. Knowing the location of clones

helps in program understanding and maintenance.

Some clones can be removed with refactoring, by

replacing them with function calls or macros, or

[Mekalai et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[1861-1867]

we can use unconventional metalevel techniques

such as Aspect-Oriented Programming or XVCL

to avoid the harmful effects of clones.

Cloning is an active area of research,

with a multitude of clone detection techniques

been proposed in the literature. One limitation of

the current research on code clones is that it is

mostly focused on the fragments of duplicated

code (we call them simple clones), and not

looking at the big picture where these fragments

of duplicated code are possibly part of a bigger

replicated program structure.We call these larger

granularity similarities structural clones. Locating

structural clones can help us see the forest from

the trees, and have significant value for program

understanding, evolution, reuse, and

reengineering.

Clone detection
The limitation of considering only

simple clones is known in the field. The main

problem is the huge number of simple clones

typically reported by clone detection tools. There

have been a number of attempts to move beyond

the raw data of simple clones. It has been

proposed to apply classification, filtering,

visualization, and navigation to help the user

make sense of the cloning information. Another

way is to detect clones of larger granularity than

code fragments. For example, some clone

detectors can detect cloned files, while others

target detecting purely conceptual similarities

using information retrieval methods rather than

detecting simple clones

Testing and clustering

Document clustering (also referred to as

Text clustering) is closely related to the concept

of data clustering. Document clustering is a

more specific technique for unsupervised

document organization, automatic topic

extraction and fast information retrieval or

filtering.

A web search engine often returns

thousands of pages in response to a broad query,

making it difficult for users to browse or to

identify relevant information. Clustering methods

can be used to automatically group the retrieved

documents into a list of meaningful categories, as

is achieved by Enterprise Search engines such as

Northern Light and Vivisimo or open source

software such as Carrot2.

Evaluation tree merging

According to our page generation model,

data instances of the same type have the same

path from the root in the DOM trees of the input

pages. Thus, our algorithm does not need to

merge similar subtrees from different levels and

the task to merge multiple trees can be broken

down from a tree level to a string level. Starting

from root nodes <html> of all input DOM trees,

which belong to some type constructor we want

to discover, our algorithm applies a new multiple

string alignment algorithm to their first-level

child nodes. There are at least two advantages in

this design.

First, as the number of child nodes under

a parent node is much smaller than the number of

nodes in the whole DOM tree or the number of

HTML tags in a Webpage, thus, the effort for

multiple string alignment here is less than that of

two complete page alignments in RoadRunner .

Second, nodes with the same tag name

(but with different functions) can be better

differentiated by the subtrees they represent,

which is an important feature not used in

EXALG. Instead, our algorithm will recognize

such nodes as peer nodes and denote the same

symbol for those child nodes to facilitate the

following string alignment.

Third, The string alignment step, we

conduct pattern mining on the aligned string S to

discover all possible repeats (set type data) from

length 1 to length jSj=2. After removing extra

occurrences of the discovered pattern (as that in

DeLa), we can then decide whether data are an

option or not based on their occurrence vector, an

idea similar to that in EXALG .

The four steps, peer node recognition,

string alignment, pattern mining, and optional

node detection, involve typical ideas that are used

in current research on Web data extraction.

However, they are redesigned or applied in a

different sequence and scenario to solve key

issues in page-level data extraction.

Testing and Evaluation of page level

Page classification has been addressed

with different objectives and methods. Most work

concerned form classification methods that are

aimed at selecting an appropriate reading method

for each form to be processed. Other approaches

address the problem of grouping together similar

documents in business environments, for instance

separating business letters from technical papers

In the last few years the classification of pages in

journals and books received more attention. An

important aspect of page classification is the

features that are extracted from the page and used

as input to the classifier.

Sub-symbolic features, like the density

of black pixels in a region, are computed directly

from the image. Symbolic features, for instance

the number of horizontal lines, are extracted from

a segmentation of the image. Structural features

[Mekalai et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[1861-1867]

(e.g. relationships between objects in the page)

can be computed from a hierarchical description

of the document. Textual features, for instance

presence of some keywords, are obtained from the

text in the image recognized by an Optical

Character Recognition program

Testing and Evaluation of record level

The automatically generated wrapper

described in Zhao et al. for instance extracts

search result records (SRRs) based on the HTML

tag structures. They use learned tag paths pointing

to the first (tag) line of candidate records. Their

main assumption is that SRRs are usually located

in the same sub-tree and its tag path follows

certain patterns. Next, they identify the data

records in a sub-tree based on learned separators

tags and finally generate a regular expression

consisting of a path and multiple separators.

The regular expression is evaluated on

the tag level which requires that the page must be

parsed. To compensate path and separator

variations, a wrapper is learned from multiple

result pages. Compared to our approach the

wrapper extracts the data records as a whole

(record level) and does not focus on the attributes

contained in the data records (attribute level).

Additionally, their approach requires a parser,

which also corrects the source to apply the path

expressions learned from the parse tree.

Path variations can only be handled by

learning a wrapper from multiple result pages, i.e.

five result pages and one non-result page are

needed in the wrapper generation phase. In

contrast, ViPER needs only one result page to

generate a wrapper. In Crescenzi et al , union-free

regular expressions are deduced, which cannot

capture the full diversity of structures presented in

HTML. Wang and Lochovsky [2003] propose a

system which applies a deduced regular

expression for extracting data records from

documents. Here labeling can only be carried out

after all records have been expensively aligned,

i.e. streaming based processing is impossible. All

systems mentioned do not support streaming

based web content extraction

Comparative study with graph

Our experiment assumes the following

situation: A developer starts building an

application and uses classes from a library l that

are unknown to her. To help the developer avoid

bugs due to incorrect usage of those classes, her

IDE supports lightweight type state verification.

Whenever the developer changes a method that

uses classes of l for which a specification is

available, the IDE launches the type state verifier.

The verifier then analyzes all changed methods

and looks for incorrect usage of classes; if it finds

a violation, it is presented to the user. Obviously,

we would like to catch as many defects and report

as few as possible.

Among the first approaches that

specifically mine models for classes is the work

by Whaley et al. Their technique mines models

with anonymous states and slices models by

grouping methods that access the same fields.

Mine so-called extended finite state machines

with anonymous states. To compress models, the

gk-tail algorithm merges states that have the same

k-future. In terms of static techniques, there is

also a huge number of different approaches.

SVM LEVENSHT

EIN

PROPOS

ED

75.2 60.73 96.26

72.3 58.2 95.94

Conclusions
In this system an approach to clone

mining for Web applications has been proposed

together with a prototype implementation for

dynamic web pages. Our approach analyzes the

page structure, implemented by specific

sequences of HTML tags, and the content

displayed for both dynamic and static pages.

Moreover, for a pair of dynamic web pages we

also consider the similarity degree of their source.

The similarity degree can be adapted and tuned in

a simple way for different web applications in

one- to-many. We have reported the results of

applying our approach and tool in a case study.

The results have confirmed that the lack of

analysis and design of the Web application has

effect on the duplication of the page and code

clones are mined in the proposed approach.

In particular, these results allowed us to

identify some common features for the multiple

code clones and block and their multiple

occurrence and influence that could be integrated,

by mining the duplications. Moreover, the clone

mining of the dynamic web pages , in one-to-

many fashion enabled to acquire information to

improve the general quality and

conceptual/design of the database of the web

application. Indeed, we plan to exploit the results

of the clone mining method to support web

application reengineering activities.

Future Enhancement
Future research on Web data extraction

focuses on comparing the contents appearing on

[Mekalai et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[1861-1867]

the page as well as the code to measure the

standard and originality of the web page.

However, they are redesigned or applied in a

different sequence and scenario to solve key

issues in page-level data extraction and

comparison to the code of web site and its

contents to find the fake and the

real.Implementing good visualizations for higher-

level similarities is currently underway . Analysis

of clones can also be much facilitated by querying

the database of clones. We have already

developed a mechanism of creating a relational

database of structural clones’ data and a query

system to facilitate the user in filtering the desired

information. Currently, our detection and analysis

of similarity patterns is based only on the physical

location of clones. With more knowledge of the

semantic associations between clones, we can

better perform the system design recovery. Using

tracing techniques to find associations between

classes and methods, we can automate and build a

clearer picture of the similarity in process flows

within a system to further aid to the user in design

recovery.

Acknowledgment
I hereby extend profound and sincere

thanks to Mrs.S.Rajanandini M.Sc,P.Phill., Guide

for this thesis, Department of Computer

Application, Sri Krishna Arts and Science

College, Coimbatore for his valuable guidance,

constant support, patience and inspiration for

completion of the thesis. I am thankful to my

respectable parents Mr.R.Murugaraj and

Mrs.M.Vijiyalakshmi, my great husband

Mr.A.AnandhaKumar and my two kids, as

without their support; it would not have been

possible to complete the thesis.

References
[1] Arasu and H. Garcia-Molina,

“Extracting Structured Data from Web

Pages,” Proc. ACM SIGMOD, pp. 337-

348, 2003.

[2] C.-H. Chang and S.-C. Lui, “IEPAD:

Information Extraction Based on Pattern

Discovery,” Proc. Int’l Conf. World

Wide Web (WWW-10), pp. 223-231,

2001.

[3] C.-H. Chang, M. Kayed, M.R. Girgis,

and K.A. Shaalan, “Survey of Web

Information Extraction Systems,” IEEE

Trans. Knowledge and Data Eng., vol.

18, no. 10, pp. 1411-1428, Oct. 2006.

[4] V. Crescenzi, G. Mecca, and P.

Merialdo, “Knowledge and Data

Engineerings,” Proc. Int’l Conf. Very

Large Databases (VLDB), pp. 109-118,

2001.

[5] C.-N. Hsu and M. Dung, “Generating

Finite-State Transducers for Semi-

Structured Data Extraction from the

Web,” J. Information Systems, vol. 23,

no. 8, pp. 521-538, 1998.

[6] N. Kushmerick, D. Weld, and R.

Doorenbos, “Wrapper Induction for

Information Extraction,” Proc. 15th Int’l

Joint Conf. Artificial Intelligence

(IJCAI), pp. 729-735, 1997.

[7] A.H.F. Laender, B.A. Ribeiro-Neto, A.S.

Silva, and J.S. Teixeira, “A Brief Survey

of Web Data Extraction Tools,”

SIGMOD Record, vol. 31, no. 2, pp. 84-

93, 2002.

[8] B. Lib, R. Grossman, and Y. Zhai,

“Mining Data Records in Web pages,”

Proc. Int’l Conf. Knowledge Discovery

and Data Mining (KDD), pp. 601-606,

2003.

[9] I. Muslea, S. Minton, and C. Knoblock,

“A Hierarchical Approach to Wrapper

Induction,” Proc. Third Int’l Conf.

Autonomous Agents (AA ’99), 1999.

[10] K. Simon and G. Lausen, “ViPER:

Augmenting Automatic Information

Extraction with Visual Perceptions,”

Proc. Int’l Conf. Information and

Knowledge Management (CIKM), 2005.

[11] J. Wang and F.H. Lochovsky, “Data

Extraction and Label Assignment for

Web Databases,” Proc. Int’l Conf.

World Wide Web (WWW-12), pp. 187-

196, 2003.

[12] Y. Yamada, N. Craswell, T. Nakatoh, and

S. Hirokawa, “Testbed for Information

Extraction from Deep Web,” Proc. Int’l

Conf. World Wide Web (WWW-13), pp.

346-347, 2004.

[13] W. Yang, “Identifying Syntactic

Differences between Two Programs,”

Software—Practice and Experience, vol.

21, no. 7, pp. 739- 755, 1991.

[14] Y. Zhai and B. Liu, “Web Data

Extraction Based on Partial Tree

Alignment,” Proc. Int’l Conf. World

Wide Web (WWW-14), pp. 76-85, 2005.

[15] H. Zhao, W. Meng, Z. Wu, V. Raghavan,

and C. Yu, “Fully Automatic Wrapper

Generation for Search Engines,” Proc.

[Mekalai et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[1861-1867]

Int’l Conf. World Wide Web (WWW),

2005.

[16] Aversano, L., Canfora, G., De Lucia, A.,

and Gallucci, P., 2001. Web Site Reuse:

Cloning and Adapting. Proc. Of 3rd

International Workshop on Web Site

Evolution, Florence, Italy, IEEE CS

Press, pp. 107-111.

[17] De Lucia, A., Scanniello, G., and

Tortora, G., 2004."Identifying Clones in

Dynamic Web Sites Using Similarity

Thresholds," Proc. Intl. Conf. on

Enterprise Information Systems

(ICEIS'04), pp.391-396.

[18] Di Lucca, G. A., Di Penta, M., Fasilio,

A. R., and Granato, P., 2001. “Clone

analysis in the web era: An approach to

identify cloned web pages,” Seventh

IEEE Workshop on Empirical Studies of

Software Maintenance (WESS), pp. 107–

113.

[19] Di Lucca, G. A., Di Penta, M., and

Fasolino, A. R., 2002. An Approach to

Identify Duplicated Web Pages. Proc. of

26th Annual International Computer

Software and Application Conference

(COMPSAC’02), Oxford, UK, IEEE CS

Press, pp. 481-486.

[20] Kamiya, T., Kusumoto, S., and Inoue, K.,

2002. CCFinder: A Multilinguistic

Token-Based Code Clone Detection

System for Large Scale Source Code.

IEEE Transactions on Software

Engineering, 28(7), pp. 654-670.

[21] Kapser, C., and Godfrey, M. W., 2003

“Toward a taxonomy of clones in source

code: A case study,” In Evolution of

Large Scale Industrial Software

Architectures, 2003.

[22] Lanubile, F. and Mallardo, T., 2003.

Finding Function Clones in Web

Application. In Proc. of 7thEuropean

Conference on Software Maintenance

and Reengineering, Benevento, Italy,

IEEE CS Press,pp. 379-386.

[23] Marcus, A., and Maletic, J. I., 2001,

“Identification of High-Level Concept

Clones in Source Code,” Proc.

Automated Software Engineering, pp.

107-114.

[24] Ricca, F. and Tonella, P., 2003. Using

Clustering to Support the Migration

from Static to Dynamic Web Pages.

Proc. of 11th International Workshop on

Program Comprehension, Portland,

Oregon, IEEE CS Press, pp. 207-216.

